
MPI on BlueGene/L: Designing an Efficient General
Purpose Messaging Solution for a Large Cellular System

George Almási
�
, Charles Archer

�
, José G. Castaños

�
, Manish Gupta

�
, Xavier

Martorell
�
, José E. Moreira

�
, William Gropp

�
, Silvius Rus

�
, and Brian Toonen

�

�
IBM T. J. Watson Research Center, Yorktown Heights NY 10598-0218�

gheorghe,castanos,jmoreira,mgupta,xavim � @us.ibm.com�
IBM Systems Group, Rochester MN 55901

archerc@us.ibm.com�
Argonne National Laboratory, Argonne IL 60439�

gropp,toonen � @mcs.anl.gov	
Texas A&M University, College Station TX 77840

rus@tamu.edu

Abstract. The BlueGene/L computer uses system-on-a-chip integration and a
highly scalable 65,536-node cellular architecture to deliver 360 Tflops of peak
computing power. Efficient operation of the machine requires a fast, scalable,
and standards compliant MPI library. In this paper, we discuss our efforts to port
the MPICH2 library to BlueGene/L.

1 Introduction

BlueGene/L [2] is a 65,536-compute node massively parallel system being developed
by IBM in partnership with Lawrence Livermore National Laboratory. Through the use
of system-on-a-chip integration [3], coupled with a highly scalable cellular architecture,
BlueGene/L will deliver 360 Tflops of peak computing power.

In this paper we present and analyze the software design for a fast, scalable, and
standards compliant MPI communication library, based on MPICH2 [1], for the Blue-
Gene/L machine. MPICH2 is an all-new implementation of MPI that is intended to
support both MPI-1 and MPI-2. The MPICH2 design features optimized MPI datatypes,
optimized remote memory access (RMA), high scalability, usability, and robustness.

The rest of this paper is organized as follows. Section 2 presents a brief description
of the BlueGene/L computer. Section 3 discusses its system software. Section 4 gives
a high level architectural overview of the communication library, and Section 5 dis-
cusses the design choices we are facing during implementation. Section 6 describes the
methodology we employed to measure performance and presents preliminary results.
We conclude with Section 7.

2 BlueGene/L hardware overview

The basic building block of BlueGene/L is a custom chip that integrates processors,
memory, and communications logic. A chip contains two 32-bit embedded PowerPC



440 cores with custom dual floating-point units that operate on two-element vectors.
The theoretical peak performance of the chip is 5.6 Gflops at the target clock speed of
700 MHz. An external double data rate (DDR) memory system completes a BlueGene/L
node. The complete BlueGene/L machine consists of 65,536 compute nodes and 1,024
I/O nodes. I/O nodes are connected to a Gigabit Ethernet network and serve as control
and file concentrators for the compute nodes.

The compute nodes of BlueGene/L are organized into a partitionable ���������	�����
three-dimensional torus network. Each compute node contains six bi-directional torus
links for direct connection with nearest neighbors. The network hardware guarantees
reliable and deadlock-free, but unordered, delivery of variable length (up to 256 bytes)
packets, using a minimal adaptive routing algorithm. It also provides simple broadcast
functionality by depositing packets along a route. At 1.4 Gb/s per direction, the bisec-
tion bandwidth of the system is 360 GB/s per direction. The I/O nodes are not connected
to the torus network.

All compute and I/O nodes of BlueGene/L are interconnect by a tree network. The
tree network supports fast point-to-point, broadcast, and reduction operations on pack-
ets, with a hardware latency of approximately 2 microseconds for a 64k-node system.
An ALU in the network can combine incoming packets using bitwise and integer op-
erations, forwarding a resulting packet along the tree. Floating-point reductions can be
performed in two phases (one for the exponent and another one for the mantissa) or in
one phase by converting the floating-point number to an extended 2048-bit representa-
tion.

3 BlueGene/L system software overview

The smallest unit independently controlled by software is called a processing set (or
pset) and consists of 64 compute nodes and an associated I/O node. Components of a
pset communicate through the tree network. File I/O and control operations are per-
formed by the I/O node of the pset through the Ethernet network.

The I/O nodes run a Linux kernel with custom drivers for the Ethernet and tree
devices. The main function of I/O nodes is to run a program called ciod (control and I/O
daemon) that implements system management services and supports file I/O operations
by the compute nodes.

The control software running on compute nodes is a minimalist POSIX compliant
compute node kernel (CNK) that provides a simple, flat, fixed-size address space for
a single user process. The CNK plays a role similar to PUMA [13] in the ASCI Red
machine. The torus network is mapped directly into user space and the tree network is
partitioned between the kernel and the user.

The system management software provides a range of services for the machine,
including machine initialization and booting, system monitoring, job launch and termi-
nation, and job scheduling. System management is provided by external service nodes
that act upon the I/O and compute nodes, both directly and through the ciod daemons.
The partitioning of the system into compute, I/O, and service nodes leads to a hierar-
chical system management software.



4 Communication software architecture

The BlueGene/L communication software architecture is divided into three layers. At
the bottom is the packet layer, a thin software library that allows access to network
hardware. At the top is the MPI library. The message layer glues the packet layer and
MPI together.

Packet layer. The torus/tree packet layer is a thin layer of software designed to abstract
and simplify access to hardware. It abstracts hardware FIFOs into torus and tree devices
and presents an API consisting of essentially three functions: initialization, packet send
and packet receive. The packet layer provides a mechanism to use the network hardware
but does not impose any policies on how to use it.

Some restrictions imposed by hardware are not abstracted at packet level for per-
formance reasons. For example, the length of a torus packet must be a multiple of 32
bytes, and can be no more than 256 bytes. Tree packets have exactly 256 bytes. Packets
sent and received by the packet layer have to be aligned to a 16-byte address boundary,
to enable the efficient use of 128-bit loads and stores to the network hardware through
the dual floating-point units.

All packet layer send and receive operations are non-blocking, leaving it up to the
higher layers to implement synchronous, blocking and/or interrupt driven communica-
tion models. In its current implementation the packet layer is stateless.

Message layer. The message layer is an active message system [7, 12, 14, 15], built on
top of the packet layer, that allows the transmission of arbitrary buffers among compute
nodes. Its architecture is shown by Figure 1.

...

...

A

P

SendQ RecvQ

P

A

P

SendQ RecvQ

Connection Manager

msg1 msg2 msgP

User buffer Protocol info

Packetizer state

Message Data

Receive Queue

Rank 0

Rank 1

Rank 2

Rank n−2

Rank n−1

Fig. 1. The message layer architecture

The connection manager controls the overall progress of the system and contains
a list of virtual connections to other nodes. Each virtual connection is responsible for
communicating with one peer. The connection has a send queue and a receive queue.
Outgoing messages are always sent in order. Incoming packets, however, can arrive out
of order. The message layer has to determine which message a packet belongs to. Thus,
each packet has to carry a message identifier.



Message buffers are used for sending and receiving packets belonging to the same
message. A message buffer contains the state of the message (in progress, complete,
etc). It also has an associated region of user memory, and a packetizer/unpacketizer that
is able to generate packets or to place incoming packets into memory. Message buffers
also handle the message protocol (i.e., what packets to send when).

Packetizers and unpacketizers drive the packet layer. Packetizers build and send
packets out of message buffers. Unpacketizers rebuild messages from the component
packets. Packetizers also handle the alignment and packet size limitations imposed by
the network hardware.

The three main functions implemented by the message layer API are Init, ad-
vance and postsend: Init initializes the message layer; advance is called to en-
sure that the message layer makes progress (i.e., sends the packets it has to send, checks
the torus hardware for incoming packets and processes them accordingly); postsend
allows a message to be submitted into the send queue.

Just like packet layer functions, message layer functions are non-blocking and de-
signed to be used in either polling mode, or driven by hardware interrupts. Completion
of a send, and the beginning and end of a receive are all signaled through callbacks.
Thus, when a message is sent and is ready to be taken off the send queue the send-
done function is invoked. When a new message starts arriving, the recvnew callback
is invoked. At the end of reception recvdone is invoked.

MPICH2. MPICH2, currently under development at Argonne National Laboratory, is
an MPI implementation designed from the ground up for scalability to hundreds of
thousands of processors. Figure 2 shows the roadmap of developing an MPI library
for BlueGene/L. MPICH2 has a modular structure, and therefore the BlueGene/L port
consists of a number of plug-in modules, leaving the code structure of MPICH2 intact.

BlueGene/L additions

MPI pt2pt datatype topology debug collectives

CH3 (Channel Interface)

TCP/IP

bgltorus

collectives

tree based
collectives

torus based

Management
Process

forker

sim
ple

bgltorus

MPID (Abstract Device Interface)

Fig. 2. The BlueGene/L MPI roadmap.

The most important addition of the BlueGene/L port is an implementation of ADI3,
the MPICH2 Abstract Device Interface [9]. A thin layer of code transforms (for exam-
ple) MPI Request objects and MPI Send function calls into sequences of message
layer postsend function calls and various message layer callbacks.

Another part of the BlueGene/L port is related to the process management primi-
tives. In MPICH2, process management is split into two parts: a process management
interface (PMI), called from within the MPI library, and a set of process managers (PM)



which are responsible for starting up and terminating down MPI jobs and implementing
the PMI functions. The BlueGene/L process manager makes full use of its hierarchical
system management software to start up and shut down MPI jobs, dealing with the
scalability problem inherent in starting up, synchronizing, and killing 65,536 MPI pro-
cesses.

MPICH2 has default implementations for all MPI collectives and becomes func-
tional the moment point-to-point primitives are implemented. The default implementa-
tions are oblivious of the underlying physical topology of the torus and tree networks.
Optimized collective operations can be implemented for communicators whose physi-
cal layouts conform to certain properties. Building optimized collectives for MPICH2
involves several steps. First, the process manager interface needs to be expanded to al-
low the calculation of the torus and tree layouts of particular communicators. Next, a
list of optimized collectives, for particular combinations of communicator layouts and
message types, needs to be implemented. The best implementation of a particular MPI
collective will be selected at run-time, based on the type of communicator involved (as
calculated using the process manager interface).

– The torus hardware can be used to efficiently implement broadcasts on contigu-
ous 1-, 2-, and 3-dimensional meshes, using the feature of the torus that allows
depositing a packet on every node it traverses. Collectives best suited for this im-
plementation include Bcast, Allgather, Alltoall, and Barrier.

– The tree hardware can be used for almost every collective that is executed on the
MPI COMM WORLD communicator, including reduction operations.

– Non-MPI COMM WORLD collectives can also be implemented using the tree, but
care must be taken to ensure deadlock free operation. The tree network guarantees
deadlock-free simultaneous delivery of two virtual channels. One of these channels
is used for control and file I/O purposes; the other is available for use by collectives.

5 Design decisions in the message layer

The design of the message layer was influenced by specific BlueGene/L hardware fea-
tures, such as network reliability, packetization and alignment restrictions, out-of-order
arrival of torus packets, and the existence of non-coherent processors in a chip. These
hardware features, together with the requirements for a low overhead scalable solution,
led us to design decisions that deserve closer examination.

The impact of hardware reliability. The BlueGene/L network hardware is completely
reliable. Once a packet is injected into the network, hardware guarantees its arrival at
the destination. The BlueGene/L message layer does not implement a packet recovery
protocol, allowing for better scaling and a large reduction of software overhead.

Packetizing and alignment. The packet layer requires data to be sent in (up to) 256-byte
chunks aligned at 16-byte boundaries. This forces the message layer to either optimize
the alignment of arbitrary buffers or to copy memory to/from aligned data buffers.

Figure 3 illustrates the principle of optimizing the alignment of long buffers. The
buffer is carved up into aligned chunks where possible. The two non-aligned chunks



at the beginning and at the end of the buffer are copied and sent together. This strat-
egy is not always applicable, because the alignment phase (i.e., the offset from the
closest aligned address) of the sending and receiving buffers may differ. MPI has no
control over the allocation of user buffers. In such cases at least one of the participating
peers, preferably the sender, has to adjust alignment by performing memory to mem-
ory copies. For rendezvous messages the receiver can send back the desired alignment
phase with the first acknowledgment packet. We note that the alignment problem only
affects zero copy message sending strategies, since a memory copy can absorb the cost
of re-alignment.

����������������������
���������������������� ������������������

����������������������������������������
��������������������������������������������

���������������������� 	�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�


���������
���������
���������
���������
�
�
�
�
�



�
�
�
�
�

�����������
����������������������

�����������
�����������
��������������������

���������
���������
���������

aligned packets

non−aligned buffer

Fig. 3. Packetizing non-aligned data.

Out-of-order packets. The routing algorithm of the torus network allows packets from
the same sender to arrive at the receiver out of order. The task of re-ordering packets
falls to the message layer.

Packet order anomalies affect the message layer in one of two ways. The simpler
case occurs when packets belonging to the same message are received out of order. This
affects the way in which packets are re-assembled into messages, and the way in which
MPI matching is done at the receiver (since typically MPI matching information is in
the first packet of a message).

Packet order reversal can also occur to packets belonging to different messages.
To prevent the mixing of packets belonging to different messages, each packet has to
carry a message identifier. To comply with MPI semantics, the receiver is responsible to
present incoming messages to MPI in strictly increasing order of the message identifier.

Cache coherence and processor use policy. Each BlueGene/L compute node incorpo-
rates two non-cache-coherent PowerPC 440 cores sharing the main memory and de-
vices. Several modes of operation for these two cores have been proposed.

– Heater mode puts the second core into an idle loop. It is easy to implement because
it sidesteps all issues of cache coherency and resource sharing.

– Virtual node mode executes a different application process in each core. Virtual
node mode doubles the processing power available to the user at the cost of halving
all other resources per process. It is well suited for computation-intensive jobs that
require little in the way of memory or communication. We are still in the beginning
of our research on virtual node mode and do not discuss it further in this paper.

– Communication coprocessor mode is considered the default mode of operation. It
assigns one processor to computation and another to communication, effectively
overlapping them by freeing the compute processor from communication tasks.



The main obstacle to implementing communication coprocessor mode efficiently is
the lack of cache coherence between processors. A naive solution is to set up a non-
cached shared memory area and implement a virtual torus device in that area. The
computation processor communicates only with the virtual torus device. The commu-
nication processor simply moves data between the real device and the virtual device.

The naive implementation of coprocessor mode still requires the compute processor
to packetize and copy data into the shared memory area. However, reads and writes
to/from the shared memory area can be done about four times faster than to/from the
network devices, reducing the load on the compute processor by the same amount.

For better performance, we want to develop a mechanism in which the communica-
tion processor moves data to and from the application memory directly. Before sending
an MPI message, the compute processor has to insure that the application buffer has
been flushed to main memory. The communication processor can then move that data
directly to the hardware torus. When receiving a message, the compute processor has
to invalidate the cache lines associated with its receive buffer before allowing the com-
munication processor to fill it in with incoming data.

Scaling issues and virtual connections. In MPICH2, point to point communication is
executed over virtual connections between pairs of nodes. Because the network hard-
ware guarantees packet delivery, virtual connections in BlueGene/L do not have to ex-
ecute a per-connection wake-up protocol when the job starts. Thus startup time on the
BlueGene/L machine will be constant for any number of participating nodes.

Another factor limiting scalability is the amount of memory needed by an MPI pro-
cess to maintain state for each virtual connection. The current design of the message
layer uses only about 50 bytes of data for every virtual connection for the torus coor-
dinates of the peer, pointer sets for the send and receive queues, and state information.
Even so, 65,536 virtual connections add up to 3 MBytes of main memory per node, or
more than 1% of the available total (256 MBytes), just to maintain the connection table.

Transmitting non-contiguous data. The MPICH2 abstract device interface allows non-
contiguous data buffers to percolate down to message layer level, affording us the op-
portunity to optimize the marshalling and unmarshalling of these data types at the low-
est (packet) level. Our current strategy centers on iovec data structures generated by
utility functions in the ADI [9] layer.

Communication protocol in the message layer. Early in the design we made the deci-
sion to implement the communication protocol in the message layer for performance
reasons. Integration with MPICH2 is somewhat harder, forcing us to implement an ab-
stract device interface (ADI3) port instead of using the easier, but less flexible, channel
interface [9]. In our view, the additional flexibility gained by this decision is well worth
the effort. The protocol design is crucial because it is influenced by virtually every as-
pect of the BlueGene/L system: the reliability and out of order nature of the network,
scalability issues, and latency and bandwidth requirements.

– Because of the reliable nature of the network no acknowledgments are needed. A
simple “fire and forget” eager protocol is a viable proposition. Any packet out the
send FIFO can be considered safely received by the other end.



– A special case of the eager protocol is represented by single-packet messages,
which should be handled with a minimum of overhead to achieve good latency.

– The main limitation of the eager protocol is the inability of the receiver to control
incoming traffic. For high volume messages, the rendezvous protocol is called for,
possibly the optimistic form implemented in Portals [5].

– The message protocol is also influenced by out-of-order arrival of packets. The first
packet of any message contains information not repeated in other packets, such as
the message length and MPI matching information. If this packet is delayed on the
network, the receiver is unable to handle the subsequent packets, and has to allocate
temporary buffers or discard the packets, with obvious undesirable consequences.
This problem does not affect the rendezvous protocol because the first packet is
always explicitly acknowledged and thus cannot arrive out of order.

– A solution to the out-of-order problem for mid-size messages involves a variation
on the rendezvous protocol that replicates the MPI matching information in the first
few packets belonging to a message, and requires the receiver to acknowledge the
first packet it receives. The number of packets that have to carry extra information
is determined by the average roundtrip latency of the torus network. The sender
will not have to stop and wait for an acknowledgment if it is received before the
allotment of special packets carrying extra information has been exhausted.

6 Simulation framework and measurements

This section illustrates the measurement methodology we are using to drive our design
decisions, and how we are planning to optimize the implementation of the MPI port.
The numbers presented here are current as of April 2003, and were measured with the
first version of the BlueGene/L port of MPICH2 that was able to run in the BGLsim
multichip simulation environment [6]. BGLsim is equipped with an implementation of
HPM [8, 10] which allows us to measure the number of instructions executed by regions
of instrumented code. We measure the software overhead in the MPICH2 port and in
the message layer. The workloads for our experiments consisted of the NAS Parallel
Benchmarks [4, 11], running on 8 or 9 processors, depending on the benchmark.

Figure 4 shows a simplified call graph for sending a blocking MPI message, with
the functions of interest to us highlighted. We instrumented these functions, and their
counterparts on the receive end, with HPM library calls. HPM counted the average
number of instructions per invocation.

Table 1 summarizes the measurements. The left panel in the table contains mea-
surements for the high level functions of the MPICH2 port. As the table shows, block-
ing operations (MPI Send and MPI Recv) are not very good indicators of software
overhead, because the instruction counts include those spent waiting for the simu-
lated network to deliver packages. The numbers associated with non-blocking calls like
MPI Isend and MPI Irecv are a much better measure of software overhead.

The right panel in the table contains data for message layer functions. The function
postsend is called to post a message for sending. It includes the overhead for send-
ing the first packet. The senddonecb function is called at the end of every message
send. It shows the same number of instructions in every benchmark. The recvnewcb



MPIR_Wait

BGLMLConnection_postsend

m
s
g
l
a
y
e
r

A
D
I

M
P
I

p
k
t
l
a
y
e
r

MPIDI_BGLTS_Request_complete

MPID_Send

MPI_Send

MPID_Progress_wait

BGLMLMsgSend_Init

BGLPacketizer_Init

BGLMLMsgSend_advance

BGLPacketizer_advance BGLPacketizer_isdone

BGLMLMsgSend_isdone

BGLMLConnection_senddone_callbackBGLMLConnection_advance

BGLTorusDevice_send

Application

Fig. 4. The callgraph of an MPI Send() call.

FT BT SP CG MG IS LU

MPI Send 11652 10479 3746 7129
MPID Send 1759 1613 1536 1744
MPI Isend 2043 2162
MPID Isend 1833 1782 1901
MPI Irecv 541 542 549 564 536 557
MPID Irecv 280 279 280 293 308 280 301
MPI Recv 13811
MPID Recv 406

FT BT SP CG MG IS LU

postsend 1107 1271 1401 1230 1114 1220 1265
senddonecb 115 115 115 115 115 115 115
recvnewcb 445 344 353 349 335 341 328
recvdonecb 16179 418 333 267 150 204 127
advance 2181 1643 1781 1429 1669 2865 955
msgsend adv 671 653 648 620 556 642 594
dispatch 520 518 516 598 661 533 620

Table 1. Software overhead measurements for MPICH2 and message layer functions.

function has a slightly higher overhead because this is the function that performs the
matching of an incoming message to the requests posted in the MPI request queue. The
recvdonecb numbers show a high variance, because in certain conditions this call-
back copies the message buffer from the unexpected queue to the posted queue. In our
measurements this happened in the FT benchmark. The table also shows the amount of
instructions spent by the message layer to get a packet into the torus hardware (ms-
gsend adv) or out of the torus hardware (dispatch).

An MPI Isend call in the BT benchmark takes about 2000 instructions. Out of
these, the call to postsend in the message layer accounts for 1300 instructions. The
postsend function calls msgsend adv to send the first packet of the message. The
msgsend adv function spends an average of 650 instructions sending the packet. Thus
the software overhead of MPID Send can be broken down as ����������� �����	��
����
instructions spent in the MPICH2 software layers, � ������� ��
���� ��
�� instructions spent
in administering the message layer itself, and ��
�� instructions spent to send each packet
from the message layer.

The above reasoning points at least one place to where the message layer can be
improved. The minimum number of instructions necessary to send/receive an aligned
packet is 50. However, the message layer spends approximately 650 instructions for the
same purpose, partially because of suboptimal implementation, alignment adjustment
through memory copies and packet layer overhead. We are confident that a better im-
plementation of the message sender/receiver can reduce the packet sending overhead
by 25-50%.



7 Conclusions

In this paper we have presented a software design for a communications library for the
BlueGene/L supercomputer based on the MPICH2 software package. The design con-
centrates on achieving very low software overheads. Concentrating on point-to-point
communication, the paper presents the design decisions we have already made and the
measurement methodology we are planning to use to drive our optimization work.

References

1. The MPICH and MPICH2 homepage. http://www-unix.mcs.anl.gov/mpi/
mpich.

2. N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In SC2002 – High
Performance Networking and Computing, Baltimore, MD, November 2002.

3. G. Almasi et al. Cellular supercomputing with system-on-a-chip. In IEEE International
Solid-state Circuits Conference ISSCC, 2001.

4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fa-
toohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal of Super-
computer Applications, 5(3):63–73, Fall 1991.

5. R. Brightwell and L. Shuler. Design and Implementation of MPI on Puma portals. In In
Proceedings of the Second MPI Developer’s Conference, pages 18–25, July 1996.

6. L. Ceze, K. Strauss, G. Alm ási, P. J. Bohrer, J. R. Brunheroto, C. Caşcaval, J. G. Castanos,
D. Lieber, X. Martorell, J. E. Moreira, A. Sanomiya, and E. Schenfeld. Full circle: Simulating
Linux clusters on Linux clusters. In Proceedings of the Fourth LCI International Conference
on Linux Clusters: The HPC Revolution 2003, San Jose, CA, June 2003.

7. G. Chiola and G. Ciaccio. Gamma: a low cost network of workstations based on active mes-
sages. In Proc. Euromicro PDP’97, London, UK, January 1997, IEEE Computer Society.,
1997.

8. L. DeRose. The Hardware Performance Monitor Toolkit. In Proceedings of Euro-Par, pages
122–131, August 2001.

9. W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and B. Toonen. MPICH Abstract
Device Interface Version 3.4 Reference Manual: Draft of May 20, 2003. http://www-
unix.mcs.anl.gov/mpi/mpich/adi3/adi3man.pdf.

10. P. Mindlin, J. R. Brunheroto, L. DeRose, and J. E. Moreira. Obtaining hardware performance
metrics for the BlueGene/L supercomputer. In Proceedings of Euro-Par 2003 Conference,
Lecture Notes in Computer Science, Klagenfurt, Austria, August 2003. Springer-Verlag.

11. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB.
12. S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois

Fast Messages (FM) for Myrinet. In Supercomputing ’95, San Diego, CA, December 1999,
1995.

13. L. Shuler, R. Riesen, C. Jong, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup.
The PUMA operating system for massively parallel computers. In In Proceedings of the Intel
Supercomputer Users’ Group. 1995 Annual North America Users’ Conference, June 1995.

14. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network interface
for parallel and distributed computing. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, Colorado, December 1995.

15. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a mech-
anism for integrated communication and computation. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, May 1992.


